FUW TRENDS IN SCIENCE & TECHNOLOGY JOURNAL

(A Peer Review Journal)
e–ISSN: 2408–5162; p–ISSN: 2048–5170

FUW TRENDS IN SCIENCE & TECHNOLOGY JOURNAL

INTERSTELLAR C3S: DIFFERENT DIPOLE MOMENT, DIFFERENT COLUMN DENSITY, SAME ASTRONOMICAL SOURCE
Pages: 574-577
E. E. Etim, M. E. Onudibia, J. E. Asuquo, O. P. Ukafia, C. Andrew and O. A. Ushie


keywords: Astrochemistry, column density, dipole moment, interstellar molecule, periodic trends

Abstract

Investigation of the physical and chemical conditions of the different molecular clouds requires accurate knowledge of the abundances and distributions of the various molecules. Abundances of interstellar and circumstellar species are vital parameters for astronomical and astrophysical models. These abundances rely on the dipole moments of the molecules. The more accurate the dipole moments are, the more reliable the estimated abundances resulting in highly plausible models. The linear carbon chain molecule, C3S with singlet ground state has been astronomically observed by three different sets of researchers with each of them using a different dipole moment to calculate the column density, thus resulting in different column density for the same molecule even from the same astronomical source, thereby posing a constraint on the use of these values for astronomical and astrophysical models. This article reports theoretically calculated dipole moment for this molecule with excellent agreement with the experimentally measured value which could be used in estimating accurate column abundance for this molecule. Recalculation of the abundance of this molecule is necessary due to the difference in the values of the dipole moments previously used in estimating the abundance of C3S.

References

Anderson JK & Ziurys LM 2014. Detection of CCN (X 2ΠR) in IRC+10216: Constraining carbon-chain chemistry. The Astrophysical Journal, 795: L1. Becke AD 1996. Density functional thermochemistry. IV. A new dynamical correlation functional and implications for exact exchange mixing. J. Chem. Phy., 104: 1040-46. Čížek J 1996. On the correlation problem in atomic and molecular systems. Calculation of Wave function Components in Ursell Type Expansion Using Quantum Field Theoretical Methods. J. Chem. Phy., 45(11): 42 – 56. Bell MB, Avery. LW & Feldman PA 1993. C3S and C5S in IRC +10216. The Astrophysical Journal, 417: L37 Belloche A, Garrod RT, Müller HSP & Menten KM 2014. Detection of a branched alkyl molecule in the interstellar medium: Iso-propyl cyanide. Science, 345: 1584-1587. Brown RD, Godfrey PD & Cragg DM 1985. Tricarbon monoxide in TMC-1. The Astrophysical Journal, 297: 302-308. Cernicharo J, Kahane C, Guélin M & Hein H 1987. Sulfur in IRC +10216. Astronomy & Astrophysics, 181: L9-L12. Cernicharo J, Bailleux S, Alekseev E & Fuente A 2014. Tentative detection of the nitrosylium ion in space. The Astrophysical Journal, 795: 40. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V & Pople JA 1998. Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J. Chem. Phy., 109: 7764. Curtiss LA, Redfern PC & Raghavachari K 2007a. Gaussian-4 theory. J. Chem. Phy., 126: 084–108. Curtiss LA, Redfern PC & Raghavachari K 2007b. Gaussian-4 theory using reduced order perturbation theory. J. Chem. Phy., 127: 124–132. Dunning Jr TH 1989. Gaussian basis sets for use in correlated molecular calculations I. The atoms boron through neon and hydrogen. J. Chem. Phy., 90: 1007–1023. Etim EE & Arunan E 2015. Rotational spectroscopy and interstellar molecules.Planex Newsletter, 5(2): 16-21. Etim EE, PrsantaGorai, Ankan Das, SandipCharabati & Arunan E 2016a. Systematic Theoretical Study on the Interstellar Carbon Chain Molecules. The Astrophysical Journal, 832: 144. Etim EE & Arunan E 2016b. Interstellar Isomeric Species: Energy, Stability and Abundance Relationship. Eur. Phys. J. Plus, 131: 448. Etim EE & Arunan E 2017a. Partition Function and Astronomical Observation of Interstellar Isomers: Is there a link? Advances in Space Research, 59(4): 1161-1171. Etim EE & Arunan E 2017b. Accurate Rotational Constants for linear Interstellar Carbon Chains: Achieving Experimental Accuracy. Astrophysics and Space Science, 362: 4. Etim EE, PrsantaGorai, Ankan Das & Arunan E 2017c. C5H9N Isomers: Pointers to Possible Branched Chain Interstellar Molecules. Eur. Phys. J. D, 71: 8. Foresman JB, Head-Gordon M, Pople JA & Frisch MJ 1992. Toward a systematic molecular orbital theory for excited states. J. Chem. Phy., 96: 135-149. Frerking MA, Linke RA & Thaddeus P 1979. Interstellar Isothiocyanic Acid. The Astrophysical Journal, 234: L143-L145. Frisch MJ, Trucks GW & Schlegel HB 2009. G09: RevC.01, Gaussian, Inc., Wallingford CT. Head-Gordon M, Pople JA & Frisch MJ 1988. MP2 energy evaluation by direct methods. Chem. Phys. Lett., 153: 503-06. Lee C, Yang W & Parr RG 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B., 37: 785-89. Linke RA, Frerking MA & Thaddeus P 1979. Interstellar Methyl Mercaptan. The Astrophysical Journal, 234: L139-L142. Lovas FJ, Suenram RD, Ogata T & Yamamoto S 1992. Microwave spectra and electric dipole moments for low-J levels of interstellar radicals: SO, C2S, C3S, c-HC3, CH2CC, and c-C3H2. The Astrophysical Journal, 399: 325-329. Martin JML & de Oliveira G 1999. Towards standard methods for benchmark quality ab initio thermochemistry W1 and W2 theory. J. Chem. Phy., 111: 1843. Parthiban S & Martin JML 2001. Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation and proton affinities. J. Chem. Phy., 114: 6014. Pople JA & Nesbet RK 1954. Self-consistent orbitals for radicals”. J. Chem. Phys., 22: 571-72. Pople JA, Seeger R & Krishnan R 1977. Variational configuration interaction methods and comparison with perturbation theory. Int. J. Quantum Chem., 12: 149-63. Remijan AJ, Snyder LE & McGuire BA 2014. Observational results of a multi-telescope campaign in search of interstellar urea [(NH2)2CO]. The Astrophysical Journal, 783: 77. Saito S, Kawaguchi K & Yamamoto S et al. 1987. Laboratory detection and astronomical identification of a new free radical, CCS 3 sigma-. The Astrophysical Journal, 317: L115-L119. Suenram RD & Lovas FJ 1994. Electric dipole moment of C3S. The Astrophysical Journal, 429: L89-L90. Yamamoto S, Saito S, Kawaguchi K, Kaifu N & Suzuki H 1987. Laboratory Detection of a New Carbon-Chain Molecule C3S and Its Astronomical Identification. The Astrophysical Journal, 317: L119-L121.

Highlights